- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Galloway, Melissa M (1)
-
Griffith, Daniel R (1)
-
Hendrickson, Heidi P (1)
-
Henesey, Brian P (1)
-
Holappa, Rachael E (1)
-
Ingwer, Stephanie M (1)
-
King, Adelaide M (1)
-
Obarow, Elizabeth G (1)
-
Tracey, Hope S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The formation of brown carbon (BrC) in aqueous atmospheric aerosols is well-documented and often attributed to aldehyde-ammonia reactions. However, many studies have focused on individual aldehyde precursors, overlooking the complex composition of organic aerosols, which comprise a diverse mix of organic and inorganic compounds. To address this, a complex BrC system was investigated by generating aqueous atmospheric aerosol mimics containing glyoxal (Gly), glycolaldehyde (GAld), and ammonium sulfate. Structural analysis using supercritical fluid chromatography−mass spectrometry (SFC-MS) showed that adjusting the Gly:GAld mole ratio leads to variations in the composition and abundance of BrC products formed. Notably, aromatic heterocycles (e.g., imidazoles and pyrazines) as well as acyclic carbonyl oligomers were identified to form at different concentrations depending on the Gly:GAld mole ratio. UV−visible spectroscopy analysis demonstrated that light absorption in these mixed Gly + GAld + AS systems cannot be modeled as a simple weighted average of the Gly:GAld mole ratio; observed changes in light absorbance can be explained by compositional changes in solution. These observations indicate that cross-reactions are occurring between the Gly and GAld in solution, potentially leading to changes in the physical properties of the aerosol. Given the thousands of reactive compounds found in atmospheric aerosol, these findings could have important implications for our understanding of organic reactions within the aerosol.more » « lessFree, publicly-accessible full text available March 14, 2026
An official website of the United States government
